Copied to
clipboard

G = C14.C42order 224 = 25·7

5th non-split extension by C14 of C42 acting via C42/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C14.5C42, C23.27D14, C22.11D28, C22.3Dic14, (C2×C28)⋊3C4, (C2×C4)⋊2Dic7, C14.9(C4⋊C4), (C2×C14).4Q8, (C2×Dic7)⋊2C4, (C2×C14).32D4, C7⋊(C2.C42), C2.5(C4×Dic7), (C22×C4).2D7, C2.2(D14⋊C4), (C22×C28).1C2, C2.2(C4⋊Dic7), C22.12(C4×D7), C2.2(Dic7⋊C4), C2.2(C23.D7), C14.11(C22⋊C4), C22.16(C7⋊D4), (C22×Dic7).1C2, C22.10(C2×Dic7), (C22×C14).31C22, (C2×C14).13(C2×C4), SmallGroup(224,37)

Series: Derived Chief Lower central Upper central

C1C14 — C14.C42
C1C7C14C2×C14C22×C14C22×Dic7 — C14.C42
C7C14 — C14.C42
C1C23C22×C4

Generators and relations for C14.C42
 G = < a,b,c | a14=b4=c4=1, bab-1=a-1, ac=ca, cbc-1=a7b >

Subgroups: 238 in 76 conjugacy classes, 45 normal (19 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, C23, C14, C14, C22×C4, C22×C4, Dic7, C28, C2×C14, C2×C14, C2.C42, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×Dic7, C22×C28, C14.C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D7, C42, C22⋊C4, C4⋊C4, Dic7, D14, C2.C42, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C14.C42

Smallest permutation representation of C14.C42
Regular action on 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 150 29 126)(2 149 30 125)(3 148 31 124)(4 147 32 123)(5 146 33 122)(6 145 34 121)(7 144 35 120)(8 143 36 119)(9 142 37 118)(10 141 38 117)(11 154 39 116)(12 153 40 115)(13 152 41 114)(14 151 42 113)(15 167 46 135)(16 166 47 134)(17 165 48 133)(18 164 49 132)(19 163 50 131)(20 162 51 130)(21 161 52 129)(22 160 53 128)(23 159 54 127)(24 158 55 140)(25 157 56 139)(26 156 43 138)(27 155 44 137)(28 168 45 136)(57 201 85 175)(58 200 86 174)(59 199 87 173)(60 198 88 172)(61 197 89 171)(62 210 90 170)(63 209 91 169)(64 208 92 182)(65 207 93 181)(66 206 94 180)(67 205 95 179)(68 204 96 178)(69 203 97 177)(70 202 98 176)(71 222 104 194)(72 221 105 193)(73 220 106 192)(74 219 107 191)(75 218 108 190)(76 217 109 189)(77 216 110 188)(78 215 111 187)(79 214 112 186)(80 213 99 185)(81 212 100 184)(82 211 101 183)(83 224 102 196)(84 223 103 195)
(1 72 27 63)(2 73 28 64)(3 74 15 65)(4 75 16 66)(5 76 17 67)(6 77 18 68)(7 78 19 69)(8 79 20 70)(9 80 21 57)(10 81 22 58)(11 82 23 59)(12 83 24 60)(13 84 25 61)(14 71 26 62)(29 105 44 91)(30 106 45 92)(31 107 46 93)(32 108 47 94)(33 109 48 95)(34 110 49 96)(35 111 50 97)(36 112 51 98)(37 99 52 85)(38 100 53 86)(39 101 54 87)(40 102 55 88)(41 103 56 89)(42 104 43 90)(113 187 138 177)(114 188 139 178)(115 189 140 179)(116 190 127 180)(117 191 128 181)(118 192 129 182)(119 193 130 169)(120 194 131 170)(121 195 132 171)(122 196 133 172)(123 183 134 173)(124 184 135 174)(125 185 136 175)(126 186 137 176)(141 219 160 207)(142 220 161 208)(143 221 162 209)(144 222 163 210)(145 223 164 197)(146 224 165 198)(147 211 166 199)(148 212 167 200)(149 213 168 201)(150 214 155 202)(151 215 156 203)(152 216 157 204)(153 217 158 205)(154 218 159 206)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,150,29,126)(2,149,30,125)(3,148,31,124)(4,147,32,123)(5,146,33,122)(6,145,34,121)(7,144,35,120)(8,143,36,119)(9,142,37,118)(10,141,38,117)(11,154,39,116)(12,153,40,115)(13,152,41,114)(14,151,42,113)(15,167,46,135)(16,166,47,134)(17,165,48,133)(18,164,49,132)(19,163,50,131)(20,162,51,130)(21,161,52,129)(22,160,53,128)(23,159,54,127)(24,158,55,140)(25,157,56,139)(26,156,43,138)(27,155,44,137)(28,168,45,136)(57,201,85,175)(58,200,86,174)(59,199,87,173)(60,198,88,172)(61,197,89,171)(62,210,90,170)(63,209,91,169)(64,208,92,182)(65,207,93,181)(66,206,94,180)(67,205,95,179)(68,204,96,178)(69,203,97,177)(70,202,98,176)(71,222,104,194)(72,221,105,193)(73,220,106,192)(74,219,107,191)(75,218,108,190)(76,217,109,189)(77,216,110,188)(78,215,111,187)(79,214,112,186)(80,213,99,185)(81,212,100,184)(82,211,101,183)(83,224,102,196)(84,223,103,195), (1,72,27,63)(2,73,28,64)(3,74,15,65)(4,75,16,66)(5,76,17,67)(6,77,18,68)(7,78,19,69)(8,79,20,70)(9,80,21,57)(10,81,22,58)(11,82,23,59)(12,83,24,60)(13,84,25,61)(14,71,26,62)(29,105,44,91)(30,106,45,92)(31,107,46,93)(32,108,47,94)(33,109,48,95)(34,110,49,96)(35,111,50,97)(36,112,51,98)(37,99,52,85)(38,100,53,86)(39,101,54,87)(40,102,55,88)(41,103,56,89)(42,104,43,90)(113,187,138,177)(114,188,139,178)(115,189,140,179)(116,190,127,180)(117,191,128,181)(118,192,129,182)(119,193,130,169)(120,194,131,170)(121,195,132,171)(122,196,133,172)(123,183,134,173)(124,184,135,174)(125,185,136,175)(126,186,137,176)(141,219,160,207)(142,220,161,208)(143,221,162,209)(144,222,163,210)(145,223,164,197)(146,224,165,198)(147,211,166,199)(148,212,167,200)(149,213,168,201)(150,214,155,202)(151,215,156,203)(152,216,157,204)(153,217,158,205)(154,218,159,206)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,150,29,126)(2,149,30,125)(3,148,31,124)(4,147,32,123)(5,146,33,122)(6,145,34,121)(7,144,35,120)(8,143,36,119)(9,142,37,118)(10,141,38,117)(11,154,39,116)(12,153,40,115)(13,152,41,114)(14,151,42,113)(15,167,46,135)(16,166,47,134)(17,165,48,133)(18,164,49,132)(19,163,50,131)(20,162,51,130)(21,161,52,129)(22,160,53,128)(23,159,54,127)(24,158,55,140)(25,157,56,139)(26,156,43,138)(27,155,44,137)(28,168,45,136)(57,201,85,175)(58,200,86,174)(59,199,87,173)(60,198,88,172)(61,197,89,171)(62,210,90,170)(63,209,91,169)(64,208,92,182)(65,207,93,181)(66,206,94,180)(67,205,95,179)(68,204,96,178)(69,203,97,177)(70,202,98,176)(71,222,104,194)(72,221,105,193)(73,220,106,192)(74,219,107,191)(75,218,108,190)(76,217,109,189)(77,216,110,188)(78,215,111,187)(79,214,112,186)(80,213,99,185)(81,212,100,184)(82,211,101,183)(83,224,102,196)(84,223,103,195), (1,72,27,63)(2,73,28,64)(3,74,15,65)(4,75,16,66)(5,76,17,67)(6,77,18,68)(7,78,19,69)(8,79,20,70)(9,80,21,57)(10,81,22,58)(11,82,23,59)(12,83,24,60)(13,84,25,61)(14,71,26,62)(29,105,44,91)(30,106,45,92)(31,107,46,93)(32,108,47,94)(33,109,48,95)(34,110,49,96)(35,111,50,97)(36,112,51,98)(37,99,52,85)(38,100,53,86)(39,101,54,87)(40,102,55,88)(41,103,56,89)(42,104,43,90)(113,187,138,177)(114,188,139,178)(115,189,140,179)(116,190,127,180)(117,191,128,181)(118,192,129,182)(119,193,130,169)(120,194,131,170)(121,195,132,171)(122,196,133,172)(123,183,134,173)(124,184,135,174)(125,185,136,175)(126,186,137,176)(141,219,160,207)(142,220,161,208)(143,221,162,209)(144,222,163,210)(145,223,164,197)(146,224,165,198)(147,211,166,199)(148,212,167,200)(149,213,168,201)(150,214,155,202)(151,215,156,203)(152,216,157,204)(153,217,158,205)(154,218,159,206) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,150,29,126),(2,149,30,125),(3,148,31,124),(4,147,32,123),(5,146,33,122),(6,145,34,121),(7,144,35,120),(8,143,36,119),(9,142,37,118),(10,141,38,117),(11,154,39,116),(12,153,40,115),(13,152,41,114),(14,151,42,113),(15,167,46,135),(16,166,47,134),(17,165,48,133),(18,164,49,132),(19,163,50,131),(20,162,51,130),(21,161,52,129),(22,160,53,128),(23,159,54,127),(24,158,55,140),(25,157,56,139),(26,156,43,138),(27,155,44,137),(28,168,45,136),(57,201,85,175),(58,200,86,174),(59,199,87,173),(60,198,88,172),(61,197,89,171),(62,210,90,170),(63,209,91,169),(64,208,92,182),(65,207,93,181),(66,206,94,180),(67,205,95,179),(68,204,96,178),(69,203,97,177),(70,202,98,176),(71,222,104,194),(72,221,105,193),(73,220,106,192),(74,219,107,191),(75,218,108,190),(76,217,109,189),(77,216,110,188),(78,215,111,187),(79,214,112,186),(80,213,99,185),(81,212,100,184),(82,211,101,183),(83,224,102,196),(84,223,103,195)], [(1,72,27,63),(2,73,28,64),(3,74,15,65),(4,75,16,66),(5,76,17,67),(6,77,18,68),(7,78,19,69),(8,79,20,70),(9,80,21,57),(10,81,22,58),(11,82,23,59),(12,83,24,60),(13,84,25,61),(14,71,26,62),(29,105,44,91),(30,106,45,92),(31,107,46,93),(32,108,47,94),(33,109,48,95),(34,110,49,96),(35,111,50,97),(36,112,51,98),(37,99,52,85),(38,100,53,86),(39,101,54,87),(40,102,55,88),(41,103,56,89),(42,104,43,90),(113,187,138,177),(114,188,139,178),(115,189,140,179),(116,190,127,180),(117,191,128,181),(118,192,129,182),(119,193,130,169),(120,194,131,170),(121,195,132,171),(122,196,133,172),(123,183,134,173),(124,184,135,174),(125,185,136,175),(126,186,137,176),(141,219,160,207),(142,220,161,208),(143,221,162,209),(144,222,163,210),(145,223,164,197),(146,224,165,198),(147,211,166,199),(148,212,167,200),(149,213,168,201),(150,214,155,202),(151,215,156,203),(152,216,157,204),(153,217,158,205),(154,218,159,206)]])

C14.C42 is a maximal subgroup of
C23.30D28  C22.2D56  (D4×C14)⋊C4  C4⋊C4⋊Dic7  (C2×C28)⋊Q8  C14.(C4×Q8)  Dic7.5C42  Dic7⋊C42  C7⋊(C428C4)  C7⋊(C425C4)  Dic7⋊C4⋊C4  C4⋊Dic77C4  C4⋊Dic78C4  C14.(C4×D4)  (C2×Dic7)⋊Q8  C2.(C28⋊Q8)  (C2×Dic7).Q8  (C2×C28).28D4  (C2×C4).Dic14  C14.(C4⋊Q8)  (C22×C4).D14  D7×C2.C42  C22.58(D4×D7)  (C2×C4)⋊9D28  D14⋊C42  D14⋊(C4⋊C4)  D14⋊C4⋊C4  D14⋊C45C4  C2.(C4×D28)  (C2×C4).20D28  (C2×C4).21D28  (C22×D7).9D4  C284(C4⋊C4)  (C2×C28)⋊10Q8  C4×Dic7⋊C4  C424Dic7  (C2×C42).D7  C4×C4⋊Dic7  C429Dic7  C425Dic7  C4×D14⋊C4  (C2×C42)⋊D7  C22⋊C4×Dic7  C24.44D14  C23.42D28  C24.3D14  C24.4D14  C24.46D14  C23⋊Dic14  C24.6D14  C24.7D14  C24.47D14  C24.8D14  C24.9D14  C24.10D14  C24.12D14  C23.45D28  C24.14D14  C232D28  C23.16D28  Dic7⋊(C4⋊C4)  C28⋊(C4⋊C4)  (C2×Dic7)⋊6Q8  C4⋊C4×Dic7  (C4×Dic7)⋊9C4  C22.23(Q8×D7)  (C2×C4)⋊Dic14  (C2×C28).287D4  C4⋊C45Dic7  (C2×C28).288D4  (C2×C4).44D28  (C2×C28).54D4  C4⋊(C4⋊Dic7)  (C2×C28).55D4  C4⋊(D14⋊C4)  D14⋊C46C4  D14⋊C47C4  (C2×C4)⋊3D28  (C2×C28).289D4  (C2×C28).290D4  (C2×C4).45D28  C4×C23.D7  C24.62D14  C24.63D14  C23.27D28  C23.28D28  C24.18D14  C24.20D14  C24.21D14  C14.C22≀C2  (Q8×C14)⋊7C4  (C22×Q8)⋊D7
C14.C42 is a maximal quotient of
C28.8C42  (C2×C28)⋊3C8  C24.D14  C24.2D14  C28.C42  C28.(C4⋊C4)  C42⋊Dic7  C28.2C42  (C2×C28).Q8  (C2×C56)⋊5C4  C28.9C42  C28.10C42  M4(2)⋊Dic7  C28.3C42  (C2×C56)⋊C4  C23.9D28  C28.4C42  M4(2)⋊4Dic7  C28.21C42

68 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4L7A7B7C14A···14U28A···28X
order12···244444···477714···1428···28
size11···1222214···142222···22···2

68 irreducible representations

dim11111222222222
type++++-+-+-+
imageC1C2C2C4C4D4Q8D7Dic7D14Dic14C4×D7D28C7⋊D4
kernelC14.C42C22×Dic7C22×C28C2×Dic7C2×C28C2×C14C2×C14C22×C4C2×C4C23C22C22C22C22
# reps1218431363612612

Matrix representation of C14.C42 in GL6(𝔽29)

25250000
4110000
00101000
00192200
000038
0000218
,
17130000
0120000
0091000
00152000
000031
00002126
,
1700000
0170000
001000
000100
00002718
0000112

G:=sub<GL(6,GF(29))| [25,4,0,0,0,0,25,11,0,0,0,0,0,0,10,19,0,0,0,0,10,22,0,0,0,0,0,0,3,21,0,0,0,0,8,8],[17,0,0,0,0,0,13,12,0,0,0,0,0,0,9,15,0,0,0,0,10,20,0,0,0,0,0,0,3,21,0,0,0,0,1,26],[17,0,0,0,0,0,0,17,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,11,0,0,0,0,18,2] >;

C14.C42 in GAP, Magma, Sage, TeX

C_{14}.C_4^2
% in TeX

G:=Group("C14.C4^2");
// GroupNames label

G:=SmallGroup(224,37);
// by ID

G=gap.SmallGroup(224,37);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,217,55,6917]);
// Polycyclic

G:=Group<a,b,c|a^14=b^4=c^4=1,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^7*b>;
// generators/relations

׿
×
𝔽